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CYANOBACTERIA IN CELSS: GROWTH STRATEGIES FOR NUTRITIONAL VARIATION AND
NITROGEN CYCLING

I. V. Fry and L. Packer, Applied Science Division, Lawrence Berkeley
Laboratory, University of California Berkeley, CA 94720.

ABSTRACT.

Cyanobacteria (Blue-Green Algae) are versatile organisms which are capable
of adjusting their cellular levels of carbohydrate, protein and lipid in
response to changes in the environment. Under "stress" conditions (salinity,
cold shock) there is an imbalance between nitrogen metabolism and
carbohydrate/lipid synthesis. The lesion in nitrogen assimilation is at the
level of transport: the "stress" condition diverts energy (trans-membrane pH
gradient) from the active accumulation of nitrate to the extrusion of salt;
and probably inhibits a cold-labile ATP'ase in the case of cold-shock. Both
situations affect the bioenergetic status of the cell such that the
nitrogenous precursors for protein synthesis are depleted. Despite the
inhibition of protein synthesis and growth, photosynthetic reductant
generation is relatively unaffected. The high O_ and reductant would normally
lead to photo-oxidative damage of cellular components, however the organism
copes by channeling the "excess" reductant into carbon storage products. The
increase in glycogen (28-35% dry weight increase) and the elongation of lipid
fatty acid side chains (2-5_ dry weight increase) at the expense of protein
synthesis (25-34% dry weight decrease) results in carbohydrate, lipid and
protein ratios that are closer to those required in the human diet. In
addition, the selection of nitrogen fixing mutants which excrete ammonium
ions present an opportunity to "tailor" these micro-organisms to meet the
specific need for a sub-system to reverse potential loss of fixed nitrogen
material.

INTRODUCTION.

To date, life support systems in manned space flights have consisted of

consumables transported in a spacecraft for the duration of the flight and

periodically replenished by subsequent space flights during longer missions

such as Skylab. This has worked well on short missions. However, a

contained self-regenerating system (I) that produces edible biomass (1,2)

from crew waste products and sunlight would have clear advantages and has

been proposed by the Controlled Ecological Life Support System (CELSS; 2).

The proposed CELSS is an integration of several unifunctional, tightly

203



controlled sub-systems such that the output of one sub-system provides the

required input of the next sub-system in the cycle. The major sub-systems are

shown in figure i. However, in this "closed-cycle" not all components are

inherently stable but must be controlled or regenerated. One obstacle to

maintaining system stability is posed by the loss of fixed nitrogen during

waste processing and biological denitrification.

Photosynthetic organisms are of prime consideration (1) in a CELSS since

they are capable of producing biomass from simple inorganic compounds at the

expense of light energy by the so-called oxygenic photosynthesis. Since

these photosynthetic systems generate 02 (from the photolysis of H20), they

could augment the physical/chemical air revitalization subsystems.

One group of photosynthetic organisms under consideration are the highly

versatile blue green algae (3, 4). These microscopic blue green algae blend

the advantages of higher plants (photosynthesis) with the ease of handling of

bacteria (axenic cultures grown in fermentors). These organisms produce a

high percentage of their biomass as protein (table I), and we have

demonstrated that the metabolic energy produced by photosynthesis can be

redirected to carbohydrate and lipid synthesis and away from protein, by

simple manipulations of environmental factors. With these methods, we are

able to manipulate the productivity of protein, lipid, and carbohydrate in a

single organism to levels which are compatible with the human dietary

requirements.

One distinct advantage of some species of blue green algae is their

ability, under nitrogen limitation, to reduce atmospheric H2 to a

biologically useful form. This would provide the CELSS with a sub-system for

maintaining the nitrogen balance, countering potential losses due to
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denitrifying bacteria or physical processing, projected in the waste

processing subsystems (5, 6).

CARBON-NITROGENBALANCEAND CONTROL.

A basic concept of photosynthesis, outlined in Figure 2, is the

competition between N2/NO_ and CO2 for reductant and ATP. That is, of

course, a rather simplistic picture, since CO2 reduction is required to

provide the carbon skeleton for assimilation of NH3 into amino acids

(proteins), and nitrogenous material is incorporated into some lipids,

nucleic acids and cell-wall components. Generally, however, the competition

between CO2 and nitrogen reduction does hold true; and since photosynthetic

electron flux (and hence reductant supply) is not shown to be improved by

environmental factors, the theoretical productivity of one component of the

biomass (e.g. carbohydrates) could only be increased at the expense of

another (e.g. protein). Our results show this to be the case. Using "shock"

(i.e. salinity or cold treatment), we have been able to demonstrate the

partitioning of reductant away from (excess) protein to (required)

carbohydrate and lipid. Growth of the unicellular Synechococcus 6311 as

measured by increments in chlorophyll, was inhibited -30% with O.5M NaCl

(figure 3a), and since the protein content per cell also decreased, this

demonstrates an approximate 50% reduction in total protein productivity.

Although the growth rate is inhibited, the glycogen productivity increases

markedly, by a factor of 10 over control cells (Figure 3b). In addition, the

lipid content was also found to change. Not only did the total lipid increase

by 5%, but the fatty acid composition was also altered. Under salt shock the

length of the fatty acids were increased from 16:1 to ]8:1. Analysis of the

total caloric content of rthe carbohydrate (glycogen plus soluble sugars),

protein and lipid per gram of cells under "stress" is shown in table II. The
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total caloric value per gram of cells remains fairly constant, but the source

of the calories changes, this redirection of reductant truly represents a

shift of metabolism From protein to carbohydrate synthesis.

The mechanism involved in this shift in metabolism seems to involve the

energy status of the cell. We have extensively documented the physiological

and biochemical response of Synechococcus 6311 to salt (7-14), and recent

results point conclusively to a depolarization of the trans cytoplasmic

membrane pH gradient as a primary event. We have shown that the membrane pH

gradient, generated by a membrane bound ATP'ase under non-stress conditions

and directly by respiration under stress conditions, is responsible for

driving the accumulation of nitrate into the cell. This pH gradient is also

utilized to remove excess intracellular sodium ions via a Na+/H+ antiporter

(]3). The presence of high concentrations of intracellular salt compete with

nitrate for the pH gradient (table Ill), with the net result that the cell's

uptake of nitrate is severely inhibited and photosynthetic reductant is

channeled into CO2 fixation. The mechanism involved in the case of cold shock

is less clear, but there are indications that the cold-labile ATP'ase may be

partially inhibited, which would deplete the magnitude of the pH gradient and

hence inhibit the uptake of nitrate.

In summary, the utilization of energy (ATP) for non-growth functions

(salt removal) or energy depletion (ATP'ase inhibition) results in the

inhibition of the nitrate uptake mechanism, presenting a nitrogen starvation

situation which results in "over-production" of fixed carbon compounds. This

scenario may be capitalized upon in future research, for example, one can

envisage the selection of suitable mutants defective in their ATP'ase

function, which would synthesize sufficient carbohydrate for human dietary
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requirements without the need for environmental manipulations.

Selection of mutants as a way to "tailor" micro-organisms to meet

specific needs of sub-systems within the proposed CELSS presents us with a

powerful tool. In the next section we will present an overview of how a

specific mutant of nitrogen-fixing cyanobacteria may be used as one component

in the CELSS.

NITROGEN CYCLING

Organic (fixed) N2 could be lost from a CELSS due to denitrifying

bacteria in stored waste material or by oxidation to N2 in the proposed

waste management system such as catalytic wet oxidation (CWO; 5) and/or

supercritical water oxidation (SCWO; 6). Current physical/chemical systems

for the reduction or oxidation of N2 to NH4+ or NO3-/NO2- have a high energy

expenditure (approximately 20,000 KWh per ton of nitrogen fixed) in the case

of the Haber process, a low efficiency (2%) in the case of the Birkland-Eyde

electric arc process, or system instability in the case of metal complexes as

catalysts (for a recent review on man-made N2-fixing systems see 15).

Photosynthetic nitrogen fixation by cyanobacteria is a plausible means of

generating a pool of biologically usable fixed nitrogen. Cyanobacteria are a

rich source of nitrogen, the majority of which is in a biologically useful

form, protein (table IV). However, the mode of transfer of the fixed nitrogen

back into the cycle is a critical consideration. The simplest method would be

to use the cyanobacteria as a protein supplement for the crew, who become the

"nitrogen processing sub-system" (figure I). An attractive alternative is to

select a mutant with the ability to excrete a nitrogenous product that can be

used directly by the plant growth chamber. There are several reports in the

literature in which versatile cyanobacterial strains have been used with the
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specific aim of excreting NH4+ ions (produced by nitrogen fixation) into the

medium (16-20), and NH4+ ions are an ideal nitrogen source for hydroponics.

The filamentous cyanobacteria can convert atmospheric N2 (as a sole nitrogen

source; ]6, 21, 22) into NH4+ using only minerals, CO2 and light (see ref. 8

and 13 for relevant reviews of N2 fixation). In these bacteria

photosynthesis occurs simultaneously with the oxygen sensitive nitrogen

fixation process. To achieve this state, the nitrogen fixing apparatus

(nitrogenase) is housed in a specialized, differentiated cell (the

heterocyst; 23) where the partial pressure of 02 is maintained at a low level

(24). This unique arrangement allows the cyanobacteria to photo-produce NH4+

ions and carbohydates and, therefore grow on a minimal medium without the

need for added complex carbon compounds. Under conditions where alternative

fixed nitrogen sources (NH4+, NO3-) are available to the cell, the

nitrogenase complex is not expressed and heterocyst differentiation is

inhibited (23, 26).

The second key enzyme in the metabolic pathway of nitrogen is glutamine

synthetase (GS). Glutamine synthetase is expressed irrespective of the

source of nitrogenous material, and is the first step in the incorporation of

NH4+ ions into amino acids. This enzyme removes NH4+ ions from the

cytoplasm, combining then with glutamate to produce glutamine (25-28) which

can be incorporated into protein or transaminated by glutamine 2-oxoglutarate

amino transferase (GOGAT; 16) to regenerate the glutamate and synthesize the

required amino acids from carbon precursors. To achieve a build-up of NH4+

ion concentration, it is necessary to inhibit GS activity. One of the major

techniques which has been used to induce strains of nitrogen fixing bacteria

to excrete NH4+ ions, is the GS inhibitor methionine sulfoximine (MSX; 17,

18). However, MSX is extremely toxic and its removal from the recycled

208



nutrients would prove problematic. An alternative technique is the production

and selection of mutants that excrete high levels of NH4+ ions. The use of

NH4+ analogs such as ethylenediamine or methylamine has been used

successfully to select mutants deficient in GS activity, while retaining high

nitrogen fixing capabilities (16, 19, 20). The technique is based on

exposure of cells (previously grown on nitrogen deficient media) to a mutagen

(nitrosoguanidine; Ig). The mutated cells are then exposed to an NH4+ analog

(ethylenediamine) at pH 9 which allows the ethylenediamine to passively

diffuse into the cell and prevents selection of NH4+ transport mutants (20).

Because ethylenediamine is metabolized by GS to produce aminoethylglutamine,

a compound which is not metabolized further and accumulates, mutants with a

low GS activity accumulate aminoethylglutamine more slowly. Thus, the

survival rate of the cells is higher, presumably because less of their

glutamate is "tied-up" as aminoethylglutamate and they can assimilate NH4+

ions produced by the nitrogenase complex.

A second effect is that the accumulation of aminoethylglutamate causes

inhibition of nitrogenase activity (20). In mutants with the nif genes

derepressed, accumulation of the aminoethylglutamine will have little effect,

allowing N2 reduction to continue. The net result of this procedure is to

select for a double mutant. In such a system (in the absence of NH4+

analogs) there is an imbalance between the rate of NH4+ supplied by the

nitrogenase complex and the rate of assimilation into amino acids. This

results in a release of NH4+ ions into the medium (see figure 4), and the

longevity of these mutants is promising (up to 600 hr. tested so far; 16).

Stewart et al have considered the use of such mutants to supply nitrogen

directly to crops in the field, but have concluded that competition from the

faster growing wild type cyanobacteria would probably reduce their
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effectiveness (16). However, such competition would not exist in a

controlled bioreactor, making this an ideal system for inclusion as part of a

CELSS.
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Figure 1. Major components within a CELSS.
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Figure 2. Energy flow diagram, competition between
CO2 and N2 for reductant and ATP.
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Table I. Storage granules in cyanobacteria.

Storage granule % dry Present In Present in

(Cell inclusion) weight SYnechococcus SDirulina

GLYCOGEN 5-60 yes yes

POLY-B-HYDROXY- 6 ( a ) n. a. yes
BUTY RATE

(lipid)

MEMBRANES 12-16 (b) yes yes

CARBOXYSOMES 25 yes yes
(protein)

PHYCOBI LSOHES 10-20 (a,b) yes yes

(protein)

CYANOPHYC IN 8-12 (a,c) no yes?

(protein)

GAS VESICLES 2 (d) no yes
(protein)

a) Allen, M. M. and Hutchison, F. Nitrogen limitation and

recovery in the cyanobacterium ADhanocaDsa 6308 (1980) Arch.
Microbiol. 128: 1-7.

b) Results from our laboratory.

c) Simon. R. D. Measurment of the cyanophycin granule polypeptide

contained in the blue-green alga ANabaena cvlindrica (1973) J.

Bacteriol. 114(3): 1213-1216.

d) Walsby, A. E. Absence of gas vesicle protein in a mutant of

Anabaena flos-asuae (1977) Arch. Microbiol. 114: 167-170.

Table II.

Cellular composition and energy content of Svnechococcu_ 6311.

CARBOHYDRATE

PROTEIN

LIPID

Control Salt shock Cold shock

%DWt Kcal/g %DWt Kcal/g %DWt Kcal/g

cells cells cells

...................................................

6.0 0.24 29.2 1.17 38.2 1.53

67.0 2.68 43.6 1.74 33.2 1.33

15.0 1.35 15.2 1.37 16.6 1.49

4.27 4.28 4.35

Energy content (Kcal/g DWt cells) calculated assuming conversion

factors of 4, 4 and 9 Kcal/g for carbohydrate, protein and lipid

respectivly (Bugbee, B. G. and Salisbury, F. B. in; Controlled

Ecological Life Support Systems: CELSS'85 Workshop (MacElroy,

Martello and Smernoff eds.] pp447-486, 1986)
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Figure 3. Effect of salt (0.5M NaCI) on the growth
(a) and glycogen productivity (b) in Synechococcus
6311.

Table Ill.

Rate of nitrate uptake by Synechococcus 6311.

NO 3- uptake,
Additions umoles/mg chlorophyll/hr-

none 0.75

NaCI, I0 mM 0.57

NaCI, 100 mM 0.12

with an imposed pH gradient of 2 units (acid

outside) and in the presence of KCN (2 mM) and

DCCD (2 umoles/mg chlorophyll).
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Table IV.

Nitrogen in Cyanobacteria

Protein 60-70 % Dry Weight

Nitrogen 87 % as Protein

13 % as Nucleic Acid

and Peptidoglycan

8-9g N per 100g cells (Dry Weight)

_1 Nitrogenase
h_

(derepressed) r Glutamine Synthetase
I!

(inhibited)

_'1 Plant GrowthChamber

' Amino_" Acids

Figure 4. Nitrogen flow diagram in the proposed
mutant of a nitrogen-fixing cyanobacterium.
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